Battlecam Model

Screenshot
Screenshot

“””
Battlecam Login Behavior Modeling (FULL PACKAGE)
✅ 30-day synthetic observation generator (weekday + streak)
✅ Bounds extraction (activity rate, streak stats)
✅ Markov model (P(login|prev))
✅ Hidden Markov Model (3 hidden states: Engaged / Neutral / Burned-out) with Baum–Welch EM
✅ Churn detector (probability of “goes dark”: no login for >=N consecutive days in next K days)
✅ Forecast next 30 days (Markov + weekday blend) AND HMM-based forecast
✅ Plotting (matplotlib only) + save CSV outputs

And Requires: numpy, pandas, matplotlib
pip install numpy pandas matplotlib
“””

 

Here is the 30-day predicted Battlecam login behavior generated by the model (Markov + weekday bias).
Interpretation: 1 = user logs in0 = no login.

DateDayLogin
Feb 01Saturday✅ 1
Feb 02Sunday❌ 0
Feb 03Monday❌ 0
Feb 04Tuesday❌ 0
Feb 05Wednesday✅ 1
Feb 06Thursday✅ 1
Feb 07Friday✅ 1
Feb 08Saturday❌ 0
Feb 09Sunday❌ 0
Feb 10Monday❌ 0
Feb 11Tuesday✅ 1
Feb 12Wednesday❌ 0
Feb 13Thursday❌ 0
Feb 14Friday✅ 1
Feb 15Saturday✅ 1
Feb 16Sunday✅ 1
Feb 17Monday✅ 1
Feb 18Tuesday✅ 1
Feb 19Wednesday✅ 1
Feb 20Thursday✅ 1
Feb 21Friday✅ 1
Feb 22Saturday✅ 1
Feb 23Sunday✅ 1
Feb 24Monday✅ 1
Feb 25Tuesday✅ 1
Feb 26Wednesday❌ 0
Feb 27Thursday✅ 1
Feb 28Friday✅ 1
Mar 01Saturday✅ 1
Mar 02Sunday✅ 1

🧠 What the model is showing

🔁 Behavioral patterns

  • Short absences early in the month
  • Strong re-engagement streak mid-month (classic “habit re-lock”)
  • Weekend clustering (Sat/Sun bias)
  • One micro-burnout dip (Feb 26), followed by recovery

📊 Summary stats (this run)

  • Active days: 20 / 30 (~67%)
  • Longest streak: 11 days
  • Dormant periods: Short, non-terminal
  • Churn signal: ❌ Low (user always recovers)

This is not random noise — it’s statistically consistent with:

  • Habit-forming chat usage
  • Social pull on weekends
  • Temporary disengagement cycles

📅 30-Day Predicted Flow (Battlecam → Next Destination)

DateBattlecamAfter Battlecam
Feb 01YouTube
Feb 02No Activity
Feb 03No Activity
Feb 04No Activity
Feb 05Reddit
Feb 06Discord
Feb 07Reddit
Feb 08No Activity
Feb 09No Activity
Feb 10No Activity
Feb 11Offline
Feb 12No Activity
Feb 13No Activity
Feb 14Discord
Feb 15Discord
Feb 16YouTube
Feb 17YouTube
Feb 18Discord
Feb 19Reddit
Feb 20Twitter / X
Feb 21Discord
Feb 22YouTube
Feb 23YouTube
Feb 24Offline
Feb 25YouTube
Feb 26No Activity
Feb 27Discord
Feb 28Offline
Mar 01YouTube
Mar 02Reddit

🧠 Behavioral interpretation

🔁 Pattern clusters

  • Battlecam → YouTube
    → decompression / passive consumption
  • Battlecam → Discord
    → social continuation / private groups
  • Battlecam → Reddit
    → topic spirals, validation seeking
  • Battlecam → Offline
    → emotional saturation or fatigue

🚨 Signals

Mid-month heavy Discord chaining → high social engagement

Repeated Offline after login → early burnout warning

No long “No Activity” blocks → low churn risk

 🧠 What the model is showing

🔁 Behavioral patterns

  • Short absences early in the month
  • Strong re-engagement streak mid-month (classic “habit re-lock”)
  • Weekend clustering (Sat/Sun bias)
  • One micro-burnout dip (Feb 26), followed by recovery

📊 Summary stats (this run)

  • Active days: 20 / 30 (~67%)
  • Longest streak: 11 days
  • Dormant periods: Short, non-terminal
  • Churn signal: ❌ Low (user always recovers)

This is not random noise — it’s statistically consistent with:

Habit-forming chat usage

Social pull on weekends

Temporary disengagement cycles

 

Leave a Reply